東京大学、慶應義塾大学、電気通信大学に在籍する大学院生の皆さんへ

平成29年度夏学期(前期・Sセメスター)CORAL 講義・実験実習を 4月より開講します

先端レーザ科学教育研究コンソーシアム CORAL では、平成 29 年度の講義科目「先端光科学講義 I」と実験実習科目「先端光科学実験実習 I」を、東京大学大学院理学系研究科、工学系研究科、電気通信大学と慶應義塾大学、ならびに光科学分野の先端企業との連携の下に開講します。

講義科目「先端光科学講義 I 」の受講を希望する方は、受講者確認のため、CORAL ウェブサイト(http://www.cuils.s.u-tokyo.ac.jp/coral-ut/) より ID を取得した後、申込サイトにログインして講義受講を申し込んで下さい.

実験実習科目「先端光科学実験実習 I」について、実験実習種目それぞれについて 1 日あたりの参加人数が限られています。そのため、履修を希望する方は、希望の「実験実習種目」ならびに「受講希望曜日」を CORAL ウェブサイト(http://www.cuils.s.u-tokyo.ac.jp/coral-ut/)より ID を取得した後、申込サイトにログインして申し込んで下さい。履修登録期間は、4 月 10 日(月)午前 12 時から 17 日(月)午後 6 時です。履修希望する方は必ず参加登録して下さい。開講内容の最新情報はウェブサイトより確認して下さい。

履修希望者にはできるだけ希望に沿えるように「実験実習種目」と「受講日」を割り当てますが、必ずしも希望に添えるわけではないことを了承下さい。もし、他の講義と開講日が重複して実験実習を履修できない曜日、日程があらかじめわかっている場合には、メールにてご連絡ください。

本申し込みは、履修登録とは別の「参加登録」申し込みとなります。履修希望者は、本参加申込の他、所定の履修登録期間に各自の所属する専攻にて、履修登録手続きをして下さい。

申し込み方法,その他履修上の注意点について,4月10日(月)午前10時25分より東京大学本郷キャンパス理学部化学本館5階講堂にて開催するガイダンスにおいて詳しく説明します.履修を希望する方は参加下さい.

今学期, 平成 29 年度夏学期 (前期・S セメスター) の開講種目, ならびに参考として過去の開講種目は CORAL ウェブサイト (http://www.cuils.s.u-tokyo.ac.jp/coral-ut/) に掲載されています.

ご不明な点がありましたら,以下の問い合わせ先までご連絡下さい.

問い合わせ先: 東京大学大学院理学系研究科

附属超高速強光子場科学研究センター

電子メール: coral@chem.s.u-tokyo.ac.jp

Website: http://www.cuils.s.u-tokyo.ac.jp/coral-ut/

電話: 03-5841-0270 (内線 20270)

平成 29 年度夏学期(前期・S セメスター) 先端光科学講義 I

開講時期: 4~7月 月曜日2限目(10:25~12:10)

教室: 東京大学本郷キャンパス 理学部化学本館4階講義室

日付	タイトル
	内容
4/10(月)	ガイダンス
5/15(月)	ランプによる UV 光及び VUV 光の発生方法と産業界での光の応用
	ウシオ電機株式会社 小田史彦
	神社仏閣の松明はどのような原理による光源だろうか?講義の最初に人工光源を大別
	し, その内のガス放電ランプ, 特に紫外(UV)域から真空紫外(VUV)域の光を発するランプ
	の発光原理と, それらランプを作る上でのキーポイントを解説する. そして, UV ランプ,
	VUV ランプの産業界における応用について紹介する. また, 近年急速に性能が向上して
	きた LED, レーザについて, その応用を中心に紹介してランプの光との性質や使われ方
	の違いについて一緒に考えてゆく.
	キーワード: ランプ, 原子・分子・エキシマ発光, 紫外光, 真空紫外光, 光化学反応, フォト
	リソグラフィ, プロジェクタ
5/22(月)	光学産業における光学技術
	株式会社ニコン 菅谷綾子
	光学産業で行われている研究開発の事例を紹介しながら、大学の光学教育であまり触れ
	られない幾何光学・収差論・結像論の要点を解説する. 光学産業をより身近に感じるため
	の講義である.
	キーワード: 光学, 光学産業, 幾何光学, 結像
5/29(月)	光の量子性と光子計数法
	東京大学大学院工学系研究科附属光量子科学研究センター 小芦雅斗
	輻射場の量子性について説明し、光と物質の相互作用における光の量子効果について
	解説する. さらに実習と関連し、光の量子論的制御法とその検出法についても解説する.
	キーワード:光子,光の量子論,光子統計,非古典光源
6/5(月)	電力プラントにおけるレーザ応用保全・検査技術
	株式会社 東芝 椎原克典
	産業界、主に電力プラントシステム等で活躍するレーザ応用技術(レーザ超音波探傷、レ
	ーザ溶接、レーザピーニング)や光応用計測技術の概要について学ぶ. 個々の技術の原
	理、実用化のための課題とその解決方法などを中心に解説する。
0 /4 0 / 17)	キーワード: レーザ超音波法, レーザピーニング法, 非破壊検査, 応力改善
6/12(月)	科学と技術の再結合を考える
	電気通信大学 レーザ新世代研究センター 植田憲一
	筆者は数多くのプロジェクト研究, それも科学研究に従事した経験を持つ. 純粋科学研究
	を通じて新規技術の開発にどのように寄与するべきか、実例紹介をしながら、科学と技術
	を再結合させる道を議論する.それは同時に、みなさんがこれから歩もうとする研究者、技
	術者の生き方についても参考になると信じる。与えられた機会を最大限活用すれば、雇
	われ仕事は自己発見の最大のチャンスともなりうることを示し、研究者、技術者として自己
	実現しようと考えている若い学生諸君の参考に供する。
	キーワード: ファイバーレーザ, セラミックレーザ, 周波数安定化, 重力波天文学, レーザ
	核融合

6/19(月) 空間光変調器とその応用 浜松ホトニクス株式会社 中央研究所 井上 卓 位相変調型空間光変調器は、光の位相の空間分布=波面を制御することができる. 波面 制御によって収差補正・ビーム分岐・ビーム形状制御が可能なため、レーザ加工や眼底イ メージング, 顕微鏡などへの応用が研究されている. 空間光変調器の原理, 特性と, 各種 の応用事例を説明する. キーワード:空間光変調器,光学,波面制御,液晶,フーリエ変換光学系,収差,回折, 光渦(ラゲールガウスビーム) 6/26(月) レーザダイオード(LD)励起固体レーザの設計 昭和オプトロニクス株式会社 角谷 実 LD励起固体レーザは現在では計測から加工まで幅広く用いられ、用途に応じた様々な 波長, 出力, 動作モードのものがある. このうち小型で連続波出力のレーザを例にとり, 必 要な出力を得るための設計や波長・スペクトル制御方法について概説する. ミスアラインメ ントを光線行列に加えた解析方法のレーザ共振器への適用についても紹介する. また, レ ーザ動作の理解を深めるために、レーザレート方程式に立ち戻って緩和振動や利得スイ ッチングなどの動的特性についても説明する. キーワード: 固体レーザ, LD励起, 緩和振動, 光線行列, 波長制御, 波長変換 7/3(月) 光MEMSデバイスと画像処理の応用について 株式会社ブイ・テクノロジー 水村通伸 画像処理は、観測、認識、計測、3次元画像生成など多岐にわたり応用されている。これら 画像処理と呼ばれるものは、ある物体像をデジタルデータ化し、コンピュータにデジタルデ ータとして取り込んだ時点以降からの処理になる。デジタル画像は2次元座標系の関数と みなせるため、さまざまな数学的な演算処理を定義することができる. 演算としては四則演 算, 論理演算や代数演算といった演算を行うことができ, 用途に応じてさまざまな演算処 理が画像処理として行われている. 本講義では画像処理の一連の流れを理解できるよう. 一般的なデジタル画像取得方法から映像信号の取り扱いなどについても簡単にふれ,さ らに最新の光MEMSデバイスを適用した画像処理の応用例をいくつか取り上げ、さらに2 つの画像の相似性の議論から導き出される相関係数がすべての画像処理と深く関係して いることを紹介する. キーワード: 画像処理, デジタル画像, 相関, MEMS

シグマ光機株式会社 多幡能徳, 野崎喜敬, 北 和門, 小松重彦

要素がいかに組み合わされて、最新システムが構成されているかを学ぶ. キーワード:研磨、蒸着膜、ハイパワーレーザ、干渉、光学の基礎、レーザ加工

講義内容: 光源, 位置制御, 光学部品などのユニットは, 目的に応じた形で組み合わされることによって, 最先端アプリケーションシステムの構築に応用されている. 個々の構成

7/10(月)

ハイテクを支えるものづくり

平成 29 年度夏学期(前期・S セメスター) 先端光科学実験実習 I

開講時期: 4~7月 火,水,木曜日の各曜日 3~5 限目(13:00 ~ 18:35)

教室: 東京大学本郷キャンパス 理学部化学本館地階 1003 号室

- -	大水八子本郷ペイン・ハ 左子前七子本路地間 1000 万主
日付	タイトル
	内容
4/10(月)	ガイダンス
5/16(火)	UV 光の分光法と光化学反応の体験実習
~ 18(木)	ウシオ電機株式会社森本幸裕,小田史彦,塩崎優
	内容: 放電ガス圧力の変化による放射スペクトルの移り変わりを分光測定し発光現象と分
	光法を理解して頂く. また, 波長の異なるUV光をガラスに照射して水に対する濡れ性の
	変化に触れ、光化学反応の波長依存性を体験実習する. (6 名)
	キーワード: エキシマランプ, 超高圧Hgランプ, モノクロメータ, 光化学反応, ガスの光吸
	収スペクトル, オゾン発生
5/24(水),	レンズ設計・基礎から実戦まで
25(木)	株式会社ニコン 大内由美子, 菅谷綾子, 竹中修二, 鳥取潤一郎, 水田正宏
両日とも受	内容: レンズ設計実習を通じて幾何光学, 波動光学に関する基礎を会得する. 受講者全
講すること	員にノートパソコンを貸与し、光学設計の専門家がレンズ設計ソフトを用いて指導する. レ
	ンズの特性、結像の際に生じる収差や評価の基本的な内容から、カメラレンズの自主設
	計まで行う. 2 回の実習で完結し、設計結果講評会で締めくくる. (15 名)
	キーワード: レンズ, 光学設計, 主光線, 収差, MTF (Modulation Transfer Function)
5/30(火)	光子相関計数法とその応用
$\sim 6/1(木)$	東京大学大学院理学系研究科・工学系研究科 吉岡孝高, 小西邦昭, 森田悠介
	内容:講義と連携し、光子相関計数法の実習を行う.2次の相関に関する簡単な解説を
	行った後、光子計数法による2次の相関計測実験を実際に立ち上げる. 計測機器の特性
	や使用法を学んだ上で、レーザ光や熱的光の光子統計性を調べることで古典的な光や
	量子光学的な光の識別法について理解を深める.(4名)
	キーワード:光子計数法,HBT干渉計,量子光学
6/6(火)	光を用いた検査技術の実習
~ 8(木)	株式会社東芝 椎原克典,廣田圭一,染谷竜太,山本 摂,上野聡一
	内容: レーザや光を使った予防保全検査技術(レーザ超音波探傷, レーザピーニング)と
	それに関わる計測技術の基礎について実験を通じて学ぶ、それぞれの光源の特徴に応じた取扱の光学系の理解すれた翌月まるよれた。1、光光は共気もの担互作用に対する理
	じた取扱や光学系の調整方法を習得すると共に、レーザと材質との相互作用に対する理解を深める。(6名)
	件を休める。(0 名) キーワード: レーザ超音波法, レーザピーニング, 非破壊検査, 放射線計測
6/13(火)	イ フ ド・レ
~ 15(木)	電気通信大学 レーザ新世代研究センター 米田仁紀
15() ()	
	内容: 自らが手を出してレーザ機器やレーザを使ったシステムを構築し動作原理など理
	解する. 以下のテーマについて、最初から製作、組み立てを行う.
	(1)レーザピンセット 生体実験で使われる水中の微粒子を光でトラップし、操作するレー
	ザピンセットをその顕微鏡システムからくみ上げ、実際にトラップするところまで完成させて
	もらう. (5名程度)
	キーワード:光トラップ,ブラウン運動
	(2)窒素レーザ製作紫外線レーザの1つである,窒素レーザを放電回路,始動ギャップ 伝送線攻笠から制作 ルーザ 発振な起こさせる(5名 租底)
	プ, 伝送線路等から製作し, レーザ発振を起こさせる (5名程度) キーワード: 紫外レーザ, 放電, 窒素レーザ
	ハーノード・ボバドー ソ,以电,主ボビー ソ

(3)固体レーザ発振 半導体レーザ励起固体レーザを,励起光の調整により発振させ, 出てきた空間モードの変化を観測してもらう。(3名程度) キーワード:固体レーザ,波長変換,光のモード 6/20(火) 空間光変調器を用いた光の空間的性質制御 $\sim 22(太)$ 浜松ホトニクス株式会社 中央研究所 井上 卓、松本直也、兵士知子 内容: 空間光変調器(SLM)を用いた空間的フーリエ変換光学系を構築し、光波面の基 本的な性質を調べる実験を行う. SLM で回折, 収差, 光渦などを生成し, その特性を計 測することを通じて、SLM の使い方を習得すると共に、光学系の基本的な性質を体感す キーワード: 空間光変調器, 光学, 波面制御, 液晶, フーリエ変換光学系, 収差, 回折, 光渦(ラゲールガウスビーム) レーザの時間応答制御と波長制御 6/27(火) 昭和オプトロニクス株式会社 角谷 実, 渡邉健太 $\sim 29(太)$ 内容: LD励起固体レーザの励起用LDの温度や駆動電流を変化させることで基本的な 動作を確認し、さらに駆動電流を変調することで緩和振動や利得スイッチング動作を観察 する。また、ガラス基板に温度勾配を与えることで動作する光偏向器の動作を確認し、こ れを青色LDの拡張共振器に挿入すること可動部のない波長可変レーザの動作を試み る. (6名) キーワード: 固体レーザ, 緩和振動, 利得スイッチング, 波長制御, 光偏向器 DMD による映像表示および画像解析に関する実習 7/4(火) $\sim 6(木)$ 株式会社ブイ・テクノロジー 水村通伸, 滝本政美 内容: MEMS デバイスとしては、自動車関連では加速度センサを使用したエアバッグシス テムや駆動制御パーツとしての圧力センサ,医薬関連では血圧センサなどがあるが,もっ とも商業的に成功したものとして米国テキサスインスツルメンツ社の開発した DMD チップ がビデオプロジェクタに採用され量産されている. DMD は Digital Micro-mirror Device の略であり、約 13μ m 角のマイクロミラーが縦1024列、横768行の2次元で配置され、そ れぞれが電気制御信号により 9800frames/sec 以上の速度で+12° から-12° に傾ける ことができるものである. 本実習では、この DMD チップを使用した簡易的な投影プロジェ クタ実験装置により、デジタル映像データを変換、ミラー駆動タイミングを制御してスクリー ンに映像として投影し、具体的な画像処理の応用として実習する。また、他の画像処理応 用例として DMD チップを使用した非接触3次元表面形状測定顕微鏡により画像を取得 し、これを画像処理することでサンプルの表面形状を測定する. さらに同顕微鏡を使用し て焦点の異なる画像を取得し、それらの相関係数を導出して正確な焦点位置と焦点深度 を検討する. (4名) キーワード: DMD, 画像処理, デジタル画像, 相関, MEMS 7/11(火) ①光学素子の取り扱い方及び製造に必要な基礎技術の実習 $\sim 13(木)$ ②光学応用システムの構築実習及び光学素子の評価 シグマ光機株式会社 多幡能徳, 野崎喜敬, 北 和門, 小松重彦 内容: 基本的な光学特性である干渉, 偏光, 回折, 屈折, 反射などを理解するため, 干 渉計などの光学系を組み, 配置や調整方法, 光学素子・光学部品の取り扱いについて学 ぶ. 自分の目で見, 自分の手で操作すると言う体験によって理解を深めると同時に, 理論 を実現化する際に注意すべき箇所や部品の性能による影響などを認識する. また, 研磨 や蒸着前工程などの光学素子製作の体験を通して、光学性能に影響を与える要因と、高 精度光学素子を支える特殊技能について理解する. (8名) キーワード: 研磨,蒸着膜,ハイパワーレーザ,干渉,光学の基礎

ガイダンスのご案内

先端光科学講義| 先端光科学実験実習|

大学院向け、先端光科学講義I、ならびに先端光科学実験実習Iの履修に関するガイダンス開催

□時 2017年 4月 10日(月)10時25分より

| 金場|| 東京大学本郷キャンパス化学本館5階講堂

図象者 東京大学、電気通信大学、慶應義塾大学に在籍する大学院生

問合せ先:coral@chem.s.u-tokyo.ac.jp

【注意点】本ガイダンスでは、履修にあたっての注意点、および、受講に際しての安全教育を行いますので、実験実習科目の受講を希望する学生は、ガイダンスにできるだけ参加して下さい。また、正式な履修にあたって東京大学の学生はUT-Mateによる履修登録、電気通信大学、ならびに慶應義塾大学の学生は、所属する各研究科、専攻事務を通じた履修登録が必須です。

■ 先端光科学講義

Sセメスター/夏学期(4~7月)の毎週月曜日10:25~12:10 東京大学本郷キャンパス理学部化学本館4階講義室にて開催

■ 先端光科学実験実習|

Sセメスター/夏学期(4~7月)の毎週火、水、木曜日午後1:00より東京大学本郷キャンパス理学部化学本館1003号室にて開催

☑ 詳細はWebをご覧下さい

URL http://www.cuils.s.u-tokyo.ac.jp/coral-ut/

HAMAMATSU

